2022中考数学知识点

时间:2022-05-23 13:39:44 | 来源:语文通

数学,是一门有趣而又很有学问的学科。生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。2022中考数学知识点有哪些你知道吗?一起来看看2022中考数学知识点,欢迎查阅!

中考数学知识点

1.有理数的加法运算:

同号相加一边倒;异号相加“大”减“小”,

符号跟着大的跑;绝对值相等“零”正好.

2.合并同类项:

合并同类项,法则不能忘,只求系数和,字母、指数不变样.

3.去、添括号法则:

去括号、添括号,关键看符号,

括号前面是正号,去、添括号不变号,

括号前面是负号,去、添括号都变号.

4.一元一次方程:

已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.

5.平方差公式:

平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.

5.1完全平方公式:

完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

首±尾括号带平方,尾项符号随中央.

5.2因式分解:

一提(公因式)二套(公式)三分组,细看几项不离谱,

两项只用平方差,三项十字相乘法,阵法熟练不马虎,

四项仔细看清楚,若有三个平方数(项),

就用一三来分组,否则二二去分组,

五项、六项更多项,二三、三三试分组,

以上若都行不通,拆项、添项看清楚.

5.3单项式运算:

加、减、乘、除、乘(开)方,三级运算分得清,

系数进行同级(运)算,指数运算降级(进)行.

5.4一元一次不等式解题的一般步骤:

去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,

两边除(以)负数时,不等号改向别忘了.

5.5一元一次不等式组的解集:

大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.

一元二次不等式、一元一次绝对值不等式的解集:

大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.

6.1分式混合运算法则:

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

变号必须两处,结果要求最简.

6.2分式方程的解法步骤:

同乘最简公分母,化成整式写清楚,

求得解后须验根,原(根)留、增(根)舍,别含糊.

6.3最简根式的条件:

最简根式三条件,号内不把分母含,

幂指数(根指数)要互质、幂指比根指小一点.

6.4特殊点的坐标特征:

坐标平面点(x,y),横在前来纵在后;

(+,+),(-,+),(-,-)和(+,-),四个象限分前后;

x轴上y为0,x为0在y轴.

象限角的平分线:

象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.

平行某轴的直线:

平行某轴的直线,点的坐标有讲究,

直线平行x轴,纵坐标相等横不同;

直线平行于y轴,点的横坐标仍照旧.

6.5对称点的坐标:

对称点坐标要记牢,相反数位置莫混淆,

x轴对称y相反,y轴对称x相反;

原点对称记,横纵坐标全变号.

7.1自变量的取值范围:

分式分母不为零,偶次根下负不行;

零次幂底数不为零,整式、奇次根全能行.

7.2函数图象的移动规律:

若把一次函数的解析式写成y=k(x+0)+b,

二次函数的解析式写成y=a(x+h)2+k的形式,

则可用下面的口诀

“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.

7.3一次函数的图象与性质的口诀:

一次函数是直线,图象经过三象限;

正比例函数更简单,经过原点一直线;

两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,

k为正来右上斜,x增减y增减;

k为负来左下展,变化规律正相反;

k的绝对值越大,线离横轴就越远.

7.4二次函数的图象与性质的口诀:

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象现;

开口、大小由a断,c与y轴来相见;

b的符号较特别,符号与a相关联;

顶点位置先找见,y轴作为参考线;

左同右异中为0,牢记心中莫混乱;

顶点坐标最重要,一般式配方它就现;

横标即为对称轴,纵标函数最值见.

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.

7.5反比例函数的图象与性质的口诀:

反比例函数有特点,双曲线相背离得远;

k为正,图在一、三(象)限,k为负,图在二、四(象)限;

图在一、三函数减,两个分支分别减.

图在二、四正相反,两个分支分别增;

线越长越近轴,永远与轴不沾边.

8.1特殊三角函数值记忆:

首先记住30度、45度、60度的正弦值、余弦值的分母都是2,

正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.

三角函数的增减性:正增余减

8.2平行四边形的判定:

要证平行四边形,两个条件才能行,

一证对边都相等,或证对边都平行,

一组对边也可以,必须相等且平行.

对角线,是个宝,互相平分“跑不了”,

对角相等也有用,“两组对角”才能成.

8.3梯形问题的辅助线:

移动梯形对角线,两腰之和成一线;

平行移动一条腰,两腰同在“△”现;

延长两腰交一点,“△”中有平行线;

作出梯形两高线,矩形显示在眼前;

已知腰上一中线,莫忘作出中位线.

8.4添加辅助线歌:

辅助线,怎么添?找出规律是关键.

题中若有角(平)分线,可向两边作垂线;

线段垂直平分线,引向两端把线连;

三角形边两中点,连接则成中位线;

三角形中有中线,延长中线翻一番.

圆的证明歌:

圆的证明不算难,常把半径直径连;

有弦可作弦心距,它定垂直平分弦;

直径是圆弦,直圆周角立上边,

它若垂直平分弦,垂径、射影响耳边;

还有与圆有关角,勿忘相互有关联,

圆周、圆心、弦切角,细找关系把线连.

同弧圆周角相等,证题用它最多见,

圆中若有弦切角,夹弧找到就好办;

圆有内接四边形,对角互补记心间,

外角等于内对角,四边形定内接圆;

直角相对或共弦,试试加个辅助圆;

若是证题打转转,四点共圆可解难;

要想证明圆切线,垂直半径过外端,

直线与圆有共点,证垂直来半径连,

直线与圆未给点,需证半径作垂线;

四边形有内切圆,对边和等是条件;

如果遇到圆与圆,弄清位置很关键,

两圆相切作公切,两圆相交连公弦.

中考数学知识点整理归纳

1.有理数:

(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:① 有理数分成整数,分数;整数又分成正整数,负整数和0;分数分成正分数和负分数。②有理数分成正数、0、负数。正数又分成正整数和正分数,负数分成负整数和负分数。

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0, a+b=0 a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

5.有理数比大小:

(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:

乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:

除以一个数等于乘以这个数的倒数;注意:零不能做除数。

中考数学知识点复习提纲

知识点1:一元二次方程的基本概念

1.一元二次方程3x2+5x-2=0的常数项是-2.

2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.

知识点2:直角坐标系与点的位置

1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.

3.直角坐标系中,点A(1,1)在第一象限。

4.直角坐标系中,点A(-2,3)在第四象限。

5.直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值

1.当x=2时,函数y=的值为1.

2.当x=3时,函数y=的值为1.

3.当x=-1时,函数y=的值为1.

知识点4:基本函数的概念及性质

1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.

6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数

1.数据13,10,12,8,7的平均数是10.

2.数据3,4,2,4,4的众数是4.

3.数据1,2,3,4,5的中位数是3.

知识点6:特殊三角函数值

1.cos30°=根号3/2。

2.sin260°+

cos260°= 1.

3.2sin30°+

tan45°= 2.

4.tan45°=1.

5.cos60°+

sin30°= 1.

知识点7:圆的基本性质

1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系

1.直线与圆有公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。