最新初二数学下册知识点

时间:2022-08-15 13:09:09 | 来源:语文通

“做数学”不仅是指简单的数学操作活动,而且是学习者自我探索、自我构建、自我发现、自我创造的一种动态过程。下面是小编整理的初二数学知识点,欢迎大家阅读学习!

初二数学知识点下册

一元一次不等式与一元一次不等式组

1、不等关系

2、不等式的基本性质

① 不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变

② 不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变

③ 不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变

3、不等式的解集

① 能使不等式成立的未知数的值,叫做不等式的解

② 一个含有不等式所有的解,组成这个不等式的解集

③ 求不等式解集的过程叫做解不等式

4、一元一次不等式

① 含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1

5、一元一次不等式与一次函数

6、一元一次不等式组

① 一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组

② 一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组

初二下册数学知识点总结归纳

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:直角三角形的`两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

第四章四边形

1平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

初二下数学知识点

第一章 三角形的证明

1、等腰三角形

① 定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)

② 全等三角形的对应边相等、对应角相等

③ 定理:等腰三角形的两底角相等,即位等边对等角

④ 推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合

⑤ 定理:等边三角形的三个内角都想等,并且每个角都等于60°

⑥ 定理:有两个角相等的是三角形是等腰三角形(等角对等边)

⑦ 定理:三个角都相等的三角形是等边三角形

⑧ 定理;有一个角等于60°的等腰三角形是等边三角形

⑨ 定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

⑩ 反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

2、直角三角形

① 定理:直角三角形的两个锐角互余

② 定理有两个角互余的三角形是直角三角形

③ 勾股定理:直角三角形两条直角边的平方和等于斜边的平方

④ 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形

⑤ 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题

⑥ 一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理

⑦ 定理:斜边和一条直角边分别相等的两个直角三角形全等

3、线段的垂直平分线

① 定理:线段垂直平分线上的点到这条线段两个端点的距离相等

② 定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上

4、角平分线

① 定理:角平分线上的点到这个角的两边的距离相等

② 定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上